Evaluations of the GHC RTS [...] show that it does not scale well on multicore processors, leading to poor performance of many network applications that try to use lightweight Haskell threads. In this paper, we show that the GHC IO manager, which is a crucial component of the GHC RTS, is the scaling bottleneck. Through a series of experiments, we identify key data structure, scheduling, and dispatching bottlenecks of the GHC IO manager. We then design a new multicore IO manager named Mio that eliminates all these bottlenecks. Our evaluations show that the new Mio manager improves realistic web server throughput by 6.5x and reduces expected web server response time by 5.7x. We also show that with Mio, McNettle (an SDN controller written in Haskell) can scale effectively to 40+ cores, reach a throughput of over 20 million new requests per second on a single machine, and hence become the fastest of all existing SDN controllers.

Evaluations of the GHC RTS [...] show that it does not scale well on multicore processors, leading to poor performance of many network applications that try to use lightweight Haskell threads. In this paper, we show that the GHC IO manager, which is a crucial component of the GHC RTS, is the scaling bottleneck. Through a series of experiments, we identify key data structure, scheduling, and dispatching bottlenecks of the GHC IO manager. We then design a new multicore IO manager named Mio that eliminates all these bottlenecks. Our evaluations show that the new Mio manager improves realistic web server throughput by 6.5x and reduces expected web server response time by 5.7x. We also show that with Mio, McNettle (an SDN controller written in Haskell) can scale effectively to 40+ cores, reach a throughput of over 20 million new requests per second on a single machine, and hence become the fastest of all existing SDN controllers.

Paul Hudak, John Hughes, Simon Peyton Jones, Philip Wadler - This paper describes the history of Haskell, including its genesis and principles, technical contributions, implementations and tools, and applications and impact.

Paul Hudak, John Hughes, Simon Peyton Jones, Philip Wadler - This paper describes the history of Haskell, including its genesis and principles, technical contributions, implementations and tools, and applications and impact.

Philip Wadler - From the type of a polymorphic function we can derive a theorem that it satisfies. Every function of the same type satisfies the same theorem. This provides a free source of useful theorems, courtesy of Reynolds' abstraction theorem for the polymorphic lambda calculus.

Philip Wadler - From the type of a polymorphic function we can derive a theorem that it satisfies. Every function of the same type satisfies the same theorem. This provides a free source of useful theorems, courtesy of Reynolds' abstraction theorem for the polymorphic lambda calculus.